g05 — Random Number Generators Introduction — g05

NAG C Library Chapter Introduction

g05 — Random Number Generators

Contents
1 Scope of the Chapter 2
2 Background to the Problems 2
3 Recommendations on Choice and Use of Available Functions 3
3.1 Pseudo-random Generators 3
3.2 Quasi-random Generators 3
4 Index 4
5 Functions Withdrawn or Scheduled for Withdrawal 5
6 References 5

[NP3645/7] g05.1

Introduction — g05 NAG C Library Manual

1 Scope of the Chapter

This chapter is concerned with the generation of sequences of independent pseudo-random and quasi-
random numbers from various distributions, and the generation of pseudo-random time series from
specified time-series models.

2 Background to the Problems

A sequence of pseudo-random numbers is a sequence of numbers generated in some systematic way such
that its statistical properties are as close as possible to those of true random numbers: for example,
negligible correlation between consecutive numbers. The most common methods are based on the
multiplicative congruential algorithm, see Knuth (1981). The basic algorithm is defined as:

n; = (@ X n;_;) modm (1)

The integers n, are then divided by m to give uniformly distributed pseudo-random numbers lying in the
interval (0,1).

Alternatively there is a variant known as the Wichmann—Hill algorithm, see Maclaren (1989), defined as:

ni; = (a; X ny;_y) modm

nli = (CLZ X nz’i_l) modm2

ny; = (a3 X n3; ;) modm; (2)
Ng; = (a4 X 714‘@,1) mod my

Uu, = (m1 + s + s + m4) mod 1.0

This generates pseudo-random numbers U;, uniformly distributed in the interval (0,1).

Either of these algorithms can be selected to generate uniformly distributed pseudo-random numbers. If
the basic algorithm (1) is selected then the NAG generator uses the values a = 13" and m = 2% in (1).
This generator gives a cycle length (i.e., the number of random numbers before the sequence starts
repeating itself) of 2°’. A good rule of thumb is never to use more numbers than the square root of the
cycle length in any one experiment as the statistical properties are impaired. For closely related reasons,
breaking numbers down into their bit patterns and using individual bits may cause trouble.

If the Wichmann—Hill algorithm is selected then one or more of 273 independent generators are available.
Each of these is defined by the set of constants a; and m; for j =1,...,4. The constants a; are in the
range 112 to 127 and the constants m; are prime numbers in the range 16718909 to 16776971, which are
close to 2** = 16777216. These constants have been chosen so that they give good results with the
spectral test, see Knuth (1981) and Maclaren (1989). The period of each Wichmann—Hill generator would
be at least 2°% if it were not for common factors between (m; — 1), (my — 1), (m3 — 1) and (my4 — 1).
However, each generator should still have a period of at least 2%, Further discussion of the properties of
these generators is given in Maclaren (1989) where it was shown that the generated pseudo-random
sequences are essentially independent of one another according to the spectral test.

The sequence given in (1) needs an initial value n,, known as the seed, while the sequence given in (2)
needs four such seeds. The use of the same seed will lead to the same sequence of numbers when these
are computed serially. One method of obtaining a seed is to use the real-time clock; this will give a non-
repeatable sequence. It is important to note that the statistical properties of the random numbers are only
guaranteed within sequences and not between sequences. Repeated initialization will thus render the
numbers obtained less rather than more independent. Similarly the statistical properties of the random
numbers are not guaranteed between two sequences generated using the two algorithms.

Random numbers from other distributions may be obtained from the uniform random numbers by the use
of transformations and rejection techniques, and for discrete distributions, by table based methods.

(a) Transformation Methods

For a continuous random variable, if the cumulative distribution function (CDF) is F'(x) then for a
uniform (0,1) random variate u, y = F~' () will have CDF F(z). This method is only efficient in a

few simple cases such as the exponential distribution with mean 1, in which case F~'(u) = —plogu.
Other transformations are based on the joint distribution of several random variables. In the bivariate

g05.2 [NP3645/7]

205 — Random Number Generators Introduction — g05

case, if v and w are random variates there may be a function g such that y = g(v, w) has the required
distribution; for example, the Student’s ¢-distribution with n degrees of freedom in which v has a

Normal distribution, w has a gamma distribution and g(v, w) = v\/n/w.
(b) Rejection Methods

Rejection techniques are based on the ability to easily generate random numbers from a distribution
(called the envelope) similar to the distribution required. The value from the envelope distribution is
then accepted as a random number from the required distribution with a certain probability; otherwise,
it is rejected and a new number is generated from the envelope distribution.

(c) Table Search Methods

For discrete distributions, if the cumulative probabilities, P; = Prob(x < 7), are stored in a table then,
given u from a uniform (0,1) distribution, the table is searched for ¢ such that P;_; < u < P;. The
returned value ¢ will have the required distribution. The table searching can be made faster by means
of an index, see Ripley (1987). The effort required to set up the table and its index may be
considerable, but the methods are very efficient when many values are needed from the same
distribution.

In addition to random numbers from various distributions, random compound structures can be generated.
These include random time series, random matrices and random samples.

The efficiency of a simulation exercise may often be increased by the use of variance reduction methods
(see Morgan (1984)). It is also worth considering whether a simulation is the best approach to solving the
problem. For example, low-dimensional integrals are usually more efficiently calculated by functions in
Chapter dO1 rather than by Monte Carlo integration.

Quasi-random numbers are intended primarily for use in Monte Carlo integration. Like pseudo-random
numbers they are uniformly distributed but they are not statistically independent, rather they are designed
to give a more even distribution in multidimensional space (uniformity). Therefore, they are often more
efficient than pseudo-random numbers in multidimensional Monte Carlo methods. There are several quasi-
random generators, three of which are available in this chapter, they are the Sobol, Faure and Neiderreiter
generators.

3 Recommendations on Choice and Use of Available Functions

3.1 Pseudo-random Generators

The functions allow the selection of either the basic generator or one of the suite of Wichmann—Hill
generators. Information on the generator is passed between functions using the parameters ¢gen and iseed.
Two utility functions are provided to initialise the generator.

nag_rngs init repeatable (g05kbc)
selects a generator and initialises it to give a repeatable stream of random numbers.

nag rngs_init nonrepeatable (g05kcc)
selects a generator and initialises it to a non-repeatable state using the system clock.

These functions should only be used once for each stream of random numbers created. Each stream
generated by a different generator will be independent. To generate high-dimensional variables one
approach would be to use a different independent generator for each dimension.

3.2 Quasi-random Generators

The functions available for quasi-random number each provide the user the option of selecting a Solbol,
Faure or Neiderreiter sequence. The maxium number of dimensions is 40. If higher dimensions are
required these generators can be combined with the pseudo-random generators described above.

nag_quasi_random_uniform (g05yac)
Uniform distribution

nag quasi_random_normal (g05ybc)
Normal distribution

[NP3645/7] g05.3

Introduction — g05 NAG C Library Manual

4 Index

Generating distributions,
functions returning a single random variate

logical value TRUE or FALSEccccooiiiiiiiiiiiieeeee nag_rngs_logical (gO5kec)
functions returning a single random variate,
real number from the continuous uniform distribution nag_rngs_basic (gO5kac)
vector of variates from discrete distributions,
binomial diStribUtionc..cccceccvveririiniinineninenenencecceeee nag_rngs_binomial (gO5mjc)
geometric diStribULIONccocuivierieiiiiieeeeee e nag_rngs_geom (gO5mbc)
hypergeometric distributioncc.ccocevverveneenenenniencenn. nag_rngs_hypergeometric (g05mlc)
logarithmic diStributionccccecevviririnininieieere e nag_rngs_logarithmic (gO5mdc)
multinomial distributionccceceeeveriierieniienieieseeieenn nag_rngs_gen_multinomial (gO5mrc)
negative binomial diStributioncccecevieviiriiinieieneseee e nag_rngs_neg_bin (gObmcc)
Poisson diStribUtiONccceeeieviierierieniiicee e nag_rngs_poisson (gO5mkc)
uniform distributioncceeevivieininireeesee e nag_rngs_discrete_uniform (gO5mac)
user-supplied distributionccoceeceveninirieninenceeeeeeen nag_rngs_gen_discrete (gO5mzc)
variate array from discrete distributions with array of parameters
Poisson distribution with varying mean nag_rngs_compd_poisson (gO5mec)
vectors of random variates from continuous distributions,
beta diSTIDULION .o.veeiiiiiiiiieiieiecee et nag_rngs_beta (gO5lec)
Cauchy diStributioncccccceiiiiiiiiiiiiiecc e nag_rngs_cauchy (g051lc)
chi-square diStribUtiONcccoeciviriiiiiiieeeeee e nag_rngs_chi_sq (g05lcc)
exponential mix diStribUtiONcccceveierieiiirieniniee e nag_rngs_exp_mix (g051lqc)
F-diStADULION .eeiiiiieie et st nag_rngs_£f (g051dc)
gamma diStrIDULIONooveviieiiiiiriieieieeee e nag_rngs_gamma (g051fc)
logistic diStrIbUtIONccooeeiiiriiriiniiiieieeeeeete e nag_rngs_logistic (g05lnc)
lognormal diStributioncccceceeieoieieiieniiiieeeeeee e nag_rngs_lognormal (gO05lkc)
negative exponential diStribULIONcccoecieviieiienieiiinieeeieeeeeeeee e nag_rngs_exp (g051jc)
Normal diStriDULIONcceevveriieiieiieiieie e nag_rngs_normal (g05lac)
single multivariate from multivariate distributions,
multivariate Normal distributioncccceceevevviencnniennen. nag_rngs_multi_normal (g05lzc)
Student’s t-diStribULIONcceverierierererierereseeee e nag_rngs_students_t (g051bc)
triangular diStributioncccceecveiieriiecienieeceeeee e nag_rngs_triangular (gO05lhc)
uniform distribUtioncccoeeievierieiieeecee e nag_rngs_uniform (g05lgc)
von Mises diStributionc..cccoceveeviriiiieiiinneininnnncceeees nag_rngs_von_mises (g05lpc)
Weibull diStribUtioncoceeieriieiiiiieeieee e nag_rngs_weibull (g051lmc)
Generating samples, matrices and tables,
random correlation MAatriXccccoeeeveevieirieinieniesese e nag_rngs_corr_matrix (g05gbc)
random orthogonal MatriXccceceviveiienierieneeiereeie e nag_rngs_orthog_matrix (gO5gac)
random permutation of an iNteger VECLOTccccevveeveereerienrienieerienneans nag_rngs_permute (gO5nac)
random sample from an integer VECIOTccoccevveeveriieneenienienenieeiene nag_rngs_sample (gO5nbc)
1andom tablecooiiiiiiiiiii e nag_rngs_2_way_table (g05qdc)
Generation of time series,
asymmetric GARCH Type 11cccooieiiiiiieeeeceeee nag_generate_agarchII (gO5hlc)
asymmetric GJR GARCHccociiiiiiiieeeeeeeeee nag_generate_garchGJR (g05hmc)
symmetric GARCH or asymmetric GARCH Type I nag_generate_agarchI (gO5hkc)
univariate ARMA model,
NOIMAL EITOIS ...iviviiiiiiriieieeieeieee ettt nag_rngs_arma_time_series (gO5pac)
vector ARMA model,
NOIMAl EITOTS ..ovvieieiieiieriieie et nag_rngs_varma_time_series (gO5pcc)

State functions,
initialise generator,

nonrepeatable SEqUENCEc..evevveeriirieniineerienenens nag_rngs_init_nonrepeatable (gO5kcc)

repeatable SEQUENCEcocceviririiriirieiisenieeie e nag_rngs_init_repeatable (gO5kbc)
initialise quasi-random generators,

Normal distributionccccoceverereninincnieneiccccene nag_quasi_random_normal (gO5ybc)

uniform distributionc.cococeeiinininininecee nag_quasi_random_uniform (gO5yac)

Superseded functions

g05.4 [NP3645/7]

205 — Random Number Generators Introduction — g05

Pseudo-random integer(s),
reference vector,

binomial distributioncccecevveveniniinineneccccee nag_ref_vec_binomial (gO5edc)
cumulative distributioncccccceeeviinieniinennn nag_ref_vec_discrete_pdf_cdf (gO5exc)
Poisson diStributioncccceceveeveeieiieiinininineecececeeeee nag_ref_vec_poisson (gO5ecc)
Poisson distribution or binomial distribution nag_return_discrete (g05eyc)
probability distributionccccceeeeevrerienieennene nag_ref_vec_discrete_pdf_cdf (gO5exc)
uniform distributioncccceeveevienieniieieieeeeeee, nag_random_discrete_uniform (g05dyc)
Pseudo-random real number(s),
beta diStribUtIONcocoviiiiiiiiiie e nag_random_beta (gO05fec)
gamma diStrIDULIONccooiiiiiiiiiieieceese e nag_random_gamma (gO5ffc)
multivariate Normal vector
TEfereNnCe VECIOT ..oeovvieieiiieiieierie et nag_ref_vec_multi_normal (gO5eac)
return multivariate Normal Vectorc.ccceceeveevencnencnne. nag_return_multi_normal (gO5ezc)
uniform distribution over (0,1)ccceecvvervrennennne. nag_random_continuous_uniform (gO5cac)
uniform distribution over (a,b)cccccceeuenee nag_random_continuous_uniform_ab (gO5dac)
Sampling and permutation,
pseudo-random PermMuationccceeeeveereerieseeiiesieenieseenieennans nag_ran_permut_vec (g05ehc)
pseudo-random SAMPIeocceevieiiirieiiiee nag_ran_sample_vec (g05ejc)

State functions,
initialise generator,

nonrepeatable SEqUENCEccevvveeverrierieeneennne. nag_random_init_nonrepeatable (gO5ccc)
repeatable SEqUENCEccocvveeveveienieeieriieieieeieeieens nag_random_init_repeatable (g05cbc)
reStOre GENETatOr SLALEc.cceevveeeerieeieriieieeieneeeeeenreeeeneeas nag_restore_random_state (g05cgc)
SAVE ZENETator STALEccccceeviirieriiiiiiciereee e nag_save_random_state (gO5cfc)
Time series,
ARMA oottt nag_arma_time_series (gO5hac)
5 Functions Withdrawn or Scheduled for Withdrawal
None.
6 References

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison—Wesley

Maclaren N M (1989) The generation of multiple independent sequences of pseudorandom numbers App!.
Statist. 38 351-359

Morgan B J T (1984) Elements of Simulation Chapman and Hall
Ripley B D (1987) Stochastic Simulation Wiley

[NP3645/7] 205.5 (last)

	g05 Introduction
	1 Scope of the Chapter
	2 Background to the Problems
	3 Recommendations on Choice and Use of Available Functions
	3.1 Pseudo-random Generators
	3.2 Quasi-random Generators

	4 Index
	5 Functions Withdrawn or Scheduled for Withdrawal
	6 References

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

